[tex] \\ [/tex]
[tex] \sf \lim_{ x \to10} \: \frac{4x × 6x}{9x + 2x} [/tex]
[tex] \\ \\ [/tex]
[tex]\tiny\tt\color{FF6666}{pa}\color{FFB266}{ke}\color{B2FF66}{ca}\color{66FF66}{ra}\color{66FFFF}{yg}\color{66B2FF}{y}brmaht[/tex]
Penjelasan dengan langkah-langkah:
[tex] \displaystyle\sf \lim_{ x \to10} \: \frac{4x × 6x}{9x + 2x} [/tex]
[tex] \sf\to \frac{4(10) \times 6(10)}{9(10) + 2(10)}[/tex]
[tex] \sf \to \frac{40 \times 60}{90 + 20} [/tex]
[tex] \sf \to \frac{2400}{90 + 20} [/tex]
[tex] \to \sf \frac{2400}{110} [/tex]
Lim (4x × 6x)/(9x + 2x)
x-›10
= (4x × 6x)/(9x + 2x)
= (4(10) × 6(10))/(9(10) + 2(10))
= ((4 × 10) × (6 × 10))/(9(10) + 2(10))
= (40 × 60)/((9 × 10) + (2 × 10))
= (40 × 60)/(90 + 20)
= 2.400/110
= 1.200/55
[tex] \huge\tt\color{FF6666}{@}\color{FFB266}{c}\color{B2FF66}{a}\color{66FF66}{l}\color{66FFFF}{l}\color{66B2FF}{m}\color{6666FF}{e}\color{2266FF}{p}\color{FF66FF}{u}\color{FF66B2}{tr}\color{FF9999}{i}\color{FFCC99}[/tex]
[answer.2.content]